数学建模创新教育探讨

数学建模创新教育探讨   【内容摘要】随着数学以空前的广度和深度向一切领域渗透,数学建模的运用领域越来越广泛,数学建模教育面临了更多的挑战和更大的压力。本文借鉴STEAM…

数学建模创新教育探讨

 

【内容摘要】随着数学以空前的广度和深度向一切领域渗透,数学建模的运用领域越来越广泛,数学建模教育面临了更多的挑战和更大的压力。本文借鉴STEAM融合多学科的教育理念,通过渗透数学建模思想,整合多学科知识,以综合创新的形式建立数学模型等措施,进行数学建模创新教育。

【关键词】STEAM;数学建模;创新教育

不同于传统的教学活动设计,STEAM教育坚持以学习者为中心。教师不仅让学生学会怎么做,而且引导学习者体验解决实际问题的过程,在探索中开启学习者的创造力。为了更好地实现用数模思想解决实际问题和创新能力的培养,参考STEAM教育知名学者亚克门教授及其团队提出的STEAM教学过程卡,对数学建模创新教育教学实施环节,提出了数学建模创新教育教学模式:What-材料有什么、要素是什么、问题是什么;How-模型假设、模型准备(学科知识、约束条件、算法工具)、工艺完善;Model-建立模型、算法设计、编程求解;Test-模型检验、评价与推广、论文写作。在教学模式设计体系中,围绕着STEAM的核心理念,包涵了三个主要的特定内容,即利用数学建模思想,整合多学科知识,以综合创新的形式建立数学模型,解决实际生活中的问题,并加以推广和运用。

一、数学建模思想培养

将建模思想培养渗透到STEAM教育领域的“做什么”和“怎么做”(WhatandHow)中,从对题目材料的读取分析获得信息,材料有什么,要素是什么,问题是什么,通过对材料的解读将现实问题“翻译”成抽象的数学问题,即用数学方法和数学手段进行模型假设、准备、建立、求解,并最终加以解释和验证,直到探究出问题的解,其中所要用到的归纳和演绎等方法无不是围绕数学建模的方法论展开,因此建模思想培养是主线。

二、如何实现多学科整合

随着数学以空前的广度和深度向一切领域的渗透,数学建模的运用领域越来越广泛,比如在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻;在发展通信、航天、微电子、自动化等高新技术领域,数学建模几乎是必不可少的工具;随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学应运而生,当用数学方法研究这些领域的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础[1 ]。STEAM教育理念是:以数学为基础,通过工程和艺术来解读科学和技术。由此可见,数学建模创新教育的教学模式借鉴STEAM教育理念,融合学科的学习方式,跨学科思维解决实际问题,是非常必要的。在教学活动设计体系中,关于How、Model和Test三大模块中,多学科融合的解决方案便是实施校本课程。例如在建模准备阶段,涉及到的关于数学建模基本方法和各种模型、数学软件运用、计算机编程、普通物理、智能算法、图论、艺术设计概论、科技论文写作有关内容,都相应开展校本课程教学,由团队中不同的学科的教师针对学生的实际情况,提出相应的教学改革方案,设计出符合学生数学建模创新思维需要的校本课程内容(包含基本方法、主要模型、算法分析与设计、图论、软件和方法论等),提供学生所需的学习资源,建立一定的建模资源库,对学生进行一段时期的课程培训。不同阶段的完成项目过程中,例如建立模型和求解模型及检验,需要各学科教师引导学生对校本课程中知识的运用,通过解决问题来锻炼学生的STEAM素养和创新能力。

三、综合创新的形式

(一)解决方法的创新。解决方法的创新是指不拘泥于传统的只用数学的知识和方法解决问题。通过对近年全国大学生数学建模赛题研究发现,跨学科题型毫无疑问的,当学生拿到赛题的第一时间,关于What的问题,他们必然会展开思索、辨别和讨论,材料涉及哪些学科哪些知识,可以肯定的是它不仅仅是数学问题,不仅仅是对数学知识的运用,它一定会涉及诸如物理、工程、化工等多学科,因此,它必然不是简单的数学知识运用,它一定是多学科知识的融合与创新才能解决的问题,而跨学科的知识融合,必然要从科学与技术的角度去创新,从艺术的角度去完善,使得数学建模在现实生活中发挥更加重大的作用。(二)学习方式的创新。学习方式的创新可以从以下几个方面理解:一是学生需要运用跨学科的知识和技术来支持问题解决,当涉及内容时能够回顾所学知识并作更深入的理解。比如2018 年全国大学生数学建模A题《基于非稳态导热的高温作业专用服装设计》中,学生就要用到高温恒温热源向外不同介质发生热传导时的热学概念并进一步理解Fourier实验定律和温度场分布,来建立热传导偏微分方程组,当要考虑经济成本时必须进一步界定它的约束条件,同时确定最优的厚度组合就要从工艺角度考虑约束条件,很显然,解决这些问题的过程既是对所学热学知识更深入的理解,也是对热学知识最基本的创新。二是三人组成的团队成员能够承认和尊重自己与他人的不同特点,在融入团队的过程中学会怎样做好自身角色,分工与合作,如何共同努力完成项目,这是一种新型的自主学习方式,是适应个人与集体如何相处的最好方式,参与者能够感觉到更多的团队认同感和责任心及当项目完成后的自豪感。经跟踪调查发现,大部分经历过基于STEAM的数学建模创新教育训练后的学生,都将在以后其他的学习工作中不由自主地向着勇于钻研、求真务实、意志坚韧、团结协作的良性发展方向努力,这完全得益于在建模训练期间的团队合作学习方式,尤其是学生经历全国大学生数学建模竞赛的全过程后,他们都会有“一次参赛,终身受益”的切身体会。三是全国大学生数学建模竞赛自1992 年举办以来,赛题主要有工程技术、管理科学和社会热点问题简化而成,赛题也没有标准答案,评判以假设的合理性、建模的创造性、结果的正确性及表达的清晰性为标准,这些既充分开放、又有规则约束的竞赛方式,可以培养慎独、自律的良好道德品质,也充分体现了高校培养全面发展的人才方面的革新。

四、思考与完善

(一)完善课程体系。教学中提倡校本课程和建立资源库来整合多学科教学,以STEAM理念来促进数学建模创新教育,是在现有的课程和师资的条件下逐步摸索出来的改革举措,毕竟还在不断完善阶段,必然会有不小的困难,比如校本课程内容的选择范围、学科整合和界定模糊、校本课程的教学安排等问题都将要整体协调,目标就是:为学生提供多元课程选择,将学生置身于数学建模创新活动的中心,进而不断更新、完善基于STEAM的数学建模创新教育课程体系。(二)形成数学建模创新教育教师专业发展体系。STEAM教育理念的核心是各学科相互融通,学生要学会如何在解决问题时整合利用各种知识和技能。这一核心理念体现了STEAM教育的兼容性,决定了教师专业发展的延展和兼容性。因此,教师的可持续继续教育是开展数学建模创新教育的关键所在,如何对教师开展基于STEAM的建模系列学习活动、数学专业教师自身的专业拓展、数学专业教师与各其他学科教师的共同协作是目前亟需要解决的问题。

 

参考文献

[1 ]姜启源,谢金星,叶俊.数学模型(第4 版)[M].北京:高等教育出版社,2011

 

为您推荐

发表评论

您的电子邮箱地址不会被公开。

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部